Turbulence without vortex stretching

Tong WU, Wouter J. T. Bos

LMFA, Ecole Centrale de Lyon

Introduction

Turbulence without vortex stretching (VS)

Consider the curl of Navier-Stokes equation: vorticity equation

$$\frac{\partial \omega}{\partial t} + (\mathbf{u} \cdot \nabla) \boldsymbol{\omega} - \nu \Delta \boldsymbol{\omega} = (\boldsymbol{\omega} \cdot \nabla) \mathbf{u}$$
(3D, incompressible, statistically homogeneous, force-free)

(*u*: velocity, $\boldsymbol{\omega} = \nabla \times \mathbf{u}$: vorticity, v: viscosity)

➤ Removing VS term is equivalent to applying an artificial forcing term

$$\frac{\partial u}{\partial t} = -(\boldsymbol{u} \cdot \nabla)\boldsymbol{u} - \nabla P - \boldsymbol{f}, \text{ where } \nabla \times \boldsymbol{f} = (\boldsymbol{\omega} \cdot \nabla)\boldsymbol{u}$$

Bos, Wouter JT. "Three-dimensional turbulence without vortex stretching." *Journal of Fluid Mechanics* 915 (2021).

Introduction

Turbulence without vortex stretching (VS)

Consider the curl of Navier-Stokes equation: vorticity equation

$$\frac{\partial \omega}{\partial t} + (\mathbf{u} \cdot \nabla) \boldsymbol{\omega} - \nu \Delta \boldsymbol{\omega} = (\boldsymbol{\omega} \cdot \nabla) \boldsymbol{u} = \mathbf{0}$$
(3D, incompressible, statistically homogeneous, force-free)

(*u*: velocity, $\boldsymbol{\omega} = \nabla \times \mathbf{u}$: vorticity, v: viscosity)

➤ Removing VS term is equivalent to applying an artificial forcing term

$$\frac{\partial u}{\partial t} = -(\boldsymbol{u} \cdot \nabla)\boldsymbol{u} - \nabla P - \boldsymbol{f}, \text{ where } \nabla \times \boldsymbol{f} = (\boldsymbol{\omega} \cdot \nabla)\boldsymbol{u}$$

Bos, Wouter JT. "Three-dimensional turbulence without vortex stretching." *Journal of Fluid Mechanics* 915 (2021).

Objective

- Study the vortex stretching by eliminating it VS plays an important role in the transfer of kinetic energy, affects the rate of dissipation.
- ➢ Bridge of 2-dimensional (2D) and 3-dimensional (3D) turbulence
 2D turbulence: ω ⊥ u ⇒ (ω · ∇)u = 0
 Study 3D turbulence containing 2D properties

Two parts of the presentation

Inviscid, truncated: Reach an absolute equilibrium state Viscous: A dual cascade

Inviscid turbulence

Absolute equilibrium

Normal 3D turbulence

- A truncated, inviscid, force-free system will finally reach a steady state: Absolute equilibrium state
- > Statistical mechanics:

3

Conservation of energy and helicity (Kraichnan 1973, Lee 1952) Mean velocity per unit volume: $U(k) = 2\alpha/(\alpha^2 - \beta^2 k^2)$

> Low helicity state ($\beta \approx 0$):

 $U(k) \approx cst$: all Fourier modes contain statistically the same amount of energy (equipartition of energy)

$$E(k){\sim}4\pi k^2 U(k) \propto k^2$$

Kraichnan, Robert H. "Helical turbulence and absolute equilibrium." *Journal of Fluid Mechanics* 59.4 (1973): 745-752.

Lee, T. D. "On some statistical properties of hydrodynamical and magneto-hydrodynamical fields." *Quarterly of Applied Mathematics* 10.1 (1952): 69-74.

Absolute equilibrium

→ Helical turbulence ($\beta \neq 0$):

Helicity affects only small scales (damped by viscous dissipation)

• 3D turbulence without VS?

- Inviscid invariants
- Energy spectrum

Numerical approach

Simulation method

DNS, Periodic box in three dimensions, Grid $128 \times 128 \times 128$

Governing equation of velocity

Take the curl of the vorticity equation $\frac{\partial \omega}{\partial t} + (\mathbf{u} \cdot \nabla) \boldsymbol{\omega} = \mathbf{0}$

Transform into Fourier space

$$\frac{\partial \hat{\boldsymbol{u}}}{\partial t} = -\frac{i}{k^2} \boldsymbol{k} \times \mathcal{F}[(\boldsymbol{u} \cdot \nabla)\boldsymbol{\omega}],$$
pseudo-spectral

(\hat{u} : velocity vector in Fourier space)

Invariants: Helicity & Enstrophy

Time evolution of statistics

Random initial velocity field

2D turbulence: energy and enstrophy, 3D turbulence: energy and helicity 3D no vortex stretching turbulence: **between 2D and 3D**

Absolute equilibrium without VS (helicity-free)

- ➢ Hypothesis: equipartition of enstrophy for helicity-free turbulence
 Enstrophy spectrum: W(k) ∝ k²
 Energy spectrum: E(k) = k⁻²W(k) ∝ k⁰
- Numerical verification:
 Helicity-free initial field

Absolute equilibrium without VS (helical turbulence)

➤ Theoretical analysis:

Statistical mechanics (Kraichnan 1973)

$$E(k) = \frac{8\pi}{\alpha} \frac{k^2}{k^2 - \gamma^2} \qquad (\gamma = \beta/\alpha)$$

 α, γ : determined by enstrophy and helicity (helicity-free: $\gamma = 0$) > Numerical simulation:

Helical, random initial field

Absolute equilibrium without VS (helical turbulence)

Numerical results:

Once we know the initial conditions (values of enstrophy and helicity), we can predict the final state of an inviscid, truncated, no VS system.

Visualization of the final state

Large-scale structure

First mode of energy spectrum (87% of the total energy)

 u_y is almost independent of y, u_z is almost independent of z

Compare with 2D turbulence

Energy Condensation: large-scale structures, acting as a pair of large counter-rotating vortices

Chertkov, M., et al. "Dynamics of energy condensation in twodimensional turbulence."

Physical review letters 99.8 (2007): 084501.

Final state of 3D no VS turbulence: 3D extension

Viscous turbulence

Cascade directions

- Prediction from the absolute equilibrium state
- ➢ Normal 3D turbulence :

Energy transfers from large scales to small scales

Absolute equilibrium state:

Kraichnan, Robert H. "Helical turbulence and absolute equilibrium." Journal of Fluid Mechanics 59.4 (1973): 745-752.

Prediction from the absolute equilibrium state

Turbulence without VS :

Dual cascade?

Enstrophy: downward cascade Helicity: upward cascade

Energy spectrum?

Dimensional analysis: $E(k) \propto \epsilon_{\Omega}^{2/3} k^{-3}$, $E(k) \propto \epsilon_{H}^{2/3} k^{-7/3}$ $(\epsilon_{\Omega}:$ dissipation rate of enstrophy, $\epsilon_{\Omega}:$ dissipation rate of helicity)

Numerical simulation

Forward enstrophy cascade

- > Numerical setup
 - Forcing (Chen 1993)
 - Simulation method
 Spectral method
 DNS
 Grid 512³
 - Inertial range:

$$E(k) \propto \epsilon_{\Omega}^{2/3} k^{-3}$$

Chen, Shiyi, et al. "On statistical correlations between velocity increments and locally averaged dissipation in homogeneous turbulence." *Physics of Fluids A: Fluid Dynamics* 5.2 (1993): 458-463.

Forward enstrophy cascade

- Forward enstrophy cascade
- Conservation of enstrophy

Backward helicity cascade

Numerical setup

- Forcing at k = 30, 31
- Grid 256 × 256 × 256
- Hypofriction (Bos 2009)

 $+\hat{f}-\mu_f\left(\frac{k_f}{\nu}\right)^{2lpha}\hat{\boldsymbol{u}}$

(with $\alpha = 1, k_f = 3$)

Avoid the cumulation of helicity at large scales

Inertial range:

$$E(k) \propto \epsilon_H^{2/3} k^{-7/3}$$

Bos, Wouter JT, and Jean-Pierre Bertoglio. "Large-scale bottleneck effect in two-dimensional urbulence." Journal of Turbulence 10 (2009): N30.

Conclusion

Inviscid no VS turbulence:

Absolute equilibrium
 Invariant : enstrophy & helicity

Spectra can be predicted

➤ Final state

ABC flow: 3D extension of the final state of 2D turbulence

- Viscous no VS turbulence:
- Dual cascade

Forward enstrophy cascade & Backward helicity cascade

➢ New slope of energy spectrum

Forward enstrophy cascade: $E(k) \propto k^{-3}$ Backward helicity cascade: $E(k) \propto k^{-7/3}$

Thanks!

tong.wu@ec-lyon.fr