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Robert M. Kerr University of Warwick

Underlying question:

• If one defines turbulence to be: The fluid motion responsible for the observed finite
time, Reynolds number (Re) independent, dissipation of finite energy ∆E.

• And given: Compact initial conditions placed in whole space, infinite R3.

• Is there a mathematical barrier that blocks finite time ∆E forming as Re→∞?

– Without assuming finite-time singularities for the underlying equations.

• Further question: And if this barrier exists, as often claimed, could this be
seen numerically with new diagnostics?

Tool: I will address these questions using two classes of DNS: (Kerr , 2018b)

Strongly perturbed trefoil vortex knot Very long, flatly-perturbed anti-parallel vortices.

Kerr, R.M. 2018b Enstrophy and circulation scaling for

Navier-Stokes reconnection. J. Fluid Mech. 839, R2
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Underlying question: Is there a mathematical barrier that blocks

• finite time ∆E∆E∆E Re→∞Re→∞Re→∞ forming? To address with new extensions of Kerr (2018b).

Strongly perturbed trefoil vortex knot Very long, flatly-perturbed anti-parallel vortices.

Kerr, R.M. 2018b Enstrophy and circulation scaling for

Navier-Stokes reconnection. J. Fluid Mech. 839, R2

1. The new calculations are turbulent by these standards:

a) Convergence of energy dissipation εεε and finite ∆E∆E∆E. b) k−5/3k−5/3k−5/3 spectra.

2. What has broken the barrier?

a) Answer: Space. b) Why? c) It’s associated with reconnection ending.

How?

3. Is helicity the barrier? a) And/Or: Does helicity break the barrier?
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Extreme Events 19 May 2021

Finite dissipation from helicity following reconnection
Underlying question: Is there a mathematical barrier that blocks
• finite time ∆E∆E∆E Re→∞Re→∞Re→∞ forming? To address with new extensions of Kerr (2018b).

1. The new calculations are turbulent by these standards:

a) Convergence of energy dissipation εεε and finite ∆E∆E∆E.

b) And k−5/3k−5/3k−5/3 spectra.

2. What has broken the barrier?

a) Answer: Space. b) Why? c) It’s associated with reconnection ending.

How?

3. Is helicity the barrier?

a) And/Or: Does helicity break the barrier?

Existing work/presentations:
Kerr, R.M. 2018b Enstrophy and circulation
scaling for Navier-Stokes reconnection. J.
Fluid Mech. 839, R2
See: https://video-archive.fields.utoronto.ca/view/10320
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Trefoil
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Figure 1 | The creation of vortices with designed shape and topology.
a, The conventional method for generating a vortex ring, in which a burst of
fluid is forced through an orifice. b, A vortex ring in air visualized with
smoke. c, A vortex ring in water traced by a line of ultrafine gas bubbles,
which show finer core details than smoke or dye. d,e, A vortex ring can
alternatively be generated as the starting vortex of a suddenly accelerated,
specially designed wing. For a wing with the trailing edge angled inward,
the starting vortex moves in the opposite of the direction of wing motion
f, The starting vortex is a result of conservation of circulation—the bound
circulation around a wing is balanced by the counter-rotating starting
vortex. g,h, A rendering of a wing tied into a knot (g), used to generate a
knotted vortex (h).

was proved20. More recently, these solutions were shown to be
unstable to linear perturbations28; however, when the LIA is no
longer valid, the interplay of global and local induction complicates
the situation considerably and the evolution of vortex knots remains
a matter of theoretical debate both in the inviscid and viscid
cases21,22. Simulations of knotted vortices with large cores, based
on Navier–Stokes dynamics, suggest that they are short lived29;
however, numerical integration of Biot–Savart vortex evolution
suggests that finite core size may enhance stability21. Quantitatively,
capturing the details of even the evolution of a simple ring remains
a surprisingly resilient problem30. Resolving such subtle questions
therefore requires both the generation of knotted flows in the
laboratory, and an effective means of three-dimensional (3D)
imaging of the evolution of the resulting flow with a high degree
of spatial and temporal resolution.

The conventional method for making a vortex loop is to force a
burst of fluid out of an orifice (Fig. 1a–c and Supplementary Movie
S1). It has been suggested that two perturbed rings could be collided
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Figure 2 | Scaling of trefoil knot vortex loops. a, An overlay of vortex knots
taken at the same rescaled time. The vortex r.m.s. radii are ¯r = 60, 45, 30
and 22.5 mm for red, yellow, green and blue colouring, respectively. The
generating wing speed is 3.10 m s�1 for all except the largest vortex knot,
for which it is 2.15 m s�1. The biggest vortex (red) is slightly larger than the
imaging field of view, resulting in some clipping on the left edge. b, The
same knots as shown in a, scaled inversely proportional to the original
hydrofoil dimensions. c, A photograph of the four knot-generating wings.
d, The rescaled time, t

⇤, of the first reconnection event. With the exception
of the smallest linked rings (which are affected by background flow from
the apparatus), we observe that the rescaled reconnection time is
independent of the Reynolds number.

to create a knotted vortex23, but to our knowledge this has never
been demonstrated experimentally (our own attempts indicate that
the strong perturbations to the shape of a vortex resulting from
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Initial condition

Ω = `3 is domain
size.

How did I get started on non-anti-parallel?

⇐ Inspiration:: Helicity conservation by flow
across scales in reconnecting vortex links
and knots Proc. Nat. Acac. Sci. 111 (2014).
Scheeler, D. K., D. P., G. L. K., W. T. M. Irvine.

Primary diagnostics: Enstrophy and Helicity

Z(t)Z(t)Z(t) =

∫
T3
`

ω2 dV H(t) =

∫
T3
`

u·ω dV,

Meaning: Enstrophy ⇒ dissipation ε = νZε = νZε = νZ

Meaning: Helicity: Knottedness.
Global topological number?

Trefoils have three advantages.

1) Their helicity.

2) Reconnection

3) FOR MATHS: Compact initial state:

• Ideal for investigating relationships between re-
connection, helicity and finite-time dissipation

∆∆∆E =
∫ T
0 ε dt, T finite.
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Primary diagnostics: Enstrophy and Helicity

Z(t) =

∫
T3
`

ω2 dV H(t) =

∫
T3
`

u·ω dV,

Meaning: Enstrophy ⇒ dissipation ε = νZε = νZε = νZ

Meaning: Helicity: Knottedness.
Global topological number?

Trefoils have three advantages.

1) Almost maximal helicity.

2) Reconnections rapid.

3) FOR MATHS: Compact initial state:
Can be isolated in R3.

• Ideal for investigating relationships between reconnection,

helicity and finite-time dissipation ∆∆∆E =
∫ T
0 ε dt, T finite.

Caveat

Caveat One absolutely needs strongly perturbed trefoils.

• Reason the advantages fail if true, three-fold symmetric trefoils are used.
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Status from Kerr (2018b):

• Consider H1/2 (helicity)1/2 decay and

modified
√
νZ enstrophy growth.

Experiments:
Helicity preservation was claimed.

• The first dynamics are associated with

tx ≈ 41.

- Helicity grows at tx.(Why?)

- Convergence of
√
νZ
√
νZ
√
νZ at txtxtx. (Why?)

tx ≈ 41tx ≈ 41tx ≈ 41 can now be associated with reconnection ending.
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Euler, Navier-Stokes on cubic torus T3
` ,

i.e. `3 periodic domains. The vorticity ω = ∇× u

∂u

∂t
+ (u·∇)u = −∇p+ν4u (1)

∂u

∂t
+ (ω × u) = −∇ph+ν4u (2)

∂ω

∂t
+ (u · ∇)ω = (ω · ∇)u + ν4ω, ∇ · ω = 0 . (3)

the enstrophy density |ω|2 equation and the volume-integrated enstrophy Z are

∂|ω|2

∂t
+(u ·∇)|ω|2 = 2ωSω︸ ︷︷ ︸

Zp=production

+ν4|ω|2− 2ν(∇ω)2︸ ︷︷ ︸
εω=Z−dissipation

, Z =

∫
ω2dV , (4)

and the helicity density h equation and global helicity H are

∂h

∂t
+(u ·∇)h = −ω · ∇Π︸ ︷︷ ︸

ω−transport
+ ν4h︸ ︷︷ ︸

ν−transport

− 2νtr(∇ω · ∇uT )︸ ︷︷ ︸
εh=H−dissipation

H =

∫
u ·ωdV . (5)

where Π = p− 1
2u

2 6= ph is not the pressure head ph = p + 1
2u

2.

Further diagnostics related to helicity. Scaled to have units of circulation.

• Sobolev norm of order 1/2: H
(1/2)
` • Square-root of helicity H1/2.

• Cubic velocity normed: L3. • L3 independent of ν implies Navier-Stokes regularity.
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New ν = 7.8e-6 calculation
with a greater increase in
the helicity HHH.

∂h

∂t
+ (u · ∇)h =(5)−ω · ∇Π︸ ︷︷ ︸

ω−transport
+ ν4h︸ ︷︷ ︸

ν−transport

− 2νtr(∇ω · ∇uT )︸ ︷︷ ︸
εh=H−dissipation

(5)

For: Π = p− 1
2u

2 6= ph (not ph = p + 1
2u

2.)

• Viscous-ν-transport is usually insignificant.

• Vorticity-ω-transport could be significant.

• Only dissipation of +h or −h can change H.

My new diagnostics:
Colour-contour vorticity
isosurfaces with−ω · ∇Π−ω · ∇Π−ω · ∇Π.
(and H-transfer-spectra)
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• Caveat on convergence of
√
νZ scaling at tx.

• True only so long as the domain

size `̀̀ grows as ννν decreases.

• Purpose of the extra brown + curve:

• Brown + calculation uses the same small viscosity

ν = 3.125e−5 as the green curve,

• but the domain is smaller, (4π)3(4π)3(4π)3 not (6π)3(6π)3(6π)3. Why?

* A partial answer comes
from Constantin CMP
(1986) “Note on Loss
of Regularity for So-
lutions of the 3D
Incompressible Euler
and Related Equa-
tions”.

•With post-1986
C&F88 Maths.

• Both ZZZ & ε = νZε = νZε = νZ

• are bounded in

• fixed domains

• if Euler is regular.

But what if the domain is
not fixed?

(Also Gibbon EPL (2020)) Next: Dissipation ε = νZε = νZε = νZ
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•What happens to the dissipation ε = νZε = νZε = νZ after the
√
νZ
√
νZ
√
νZ cross at t = tx ≈ 41t = tx ≈ 41t = tx ≈ 41?

⇐ tx = 41⇐ tx = 41⇐ tx = 41

⇐ Three highest Reynolds numbers.
ε(t) = νZε(t) = νZε(t) = νZ

• Increase in enstro-
phy is spawned by
the t ≈ 41 end of
the first reconnec-
tion. ⇒

• Helicity increase
also due to recon-
nection? ⇒
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Is there any k1/3 (1/3=-5/3+2) regime?

• Z(k) ∼ k1/3.

•With a transient overshooting during reconnection.

(Later time spectra available in this file.)

11



Very long, flatly-perturbed anti-parallel pair.

t < 14 Preliminary: Before reconnection.
Reconnection: Secondary
vortices.

t = 16t = 16t = 16
⇐⇐⇐ Pair touch,
form tent. (next)
Reconnected pair, ⇒⇒⇒
separate and twist.
Low Reynolds=5000
Details in Kerr (2018b).
New: Re=Γ/ν=80, 000Re=Γ/ν=80, 000Re=Γ/ν=80, 000.

t = 24t = 24t = 24

Would like to contrast these (6π)3(6π)3(6π)3 results to: McKeown et al (2019); Yao & Hussain(2020); But will just discuss the ε(t)ε(t)ε(t) convergence for now.
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Would like to contrast these (6π)3(6π)3(6π)3 results to: McKeown et al (2019); Yao & Hussain
(2020); But will just discuss the ε(t)ε(t)ε(t) convergence for now.
See: https://video-archive.fields.utoronto.ca/view/10320 (April 2019 Fields Institute)
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t = 0: Large H > 0
at small k.
Residual small H < 0

at larger k.

t = 48 Post-reconnection
small H < 0 at larger k.

Plus H > 0 undulations at intermediate k.

t = 0: Large Ht < 0 at small k.
Moving H from small k.

• These spectra suggest some type shell model dynamics?

• Since this is 3D-DNS, could physical space fluxes help in our understanding?

14



Vorticity isosurface
contoured with
helicity.

t= 2.8 is an unperturbed trefoil with the three-fold symmetry and thinner
core.
Different timescales and suppresses the evolution with enstrophy initially de-
caying. So the helicity density hhh is still mostly the original positive value
along the vortex.
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Vorticity isosurface
contoured with
helicity.

t = 2.8 is an unperturbed tre-

foil with the three-fold symme-

try and thinner core.

Different timescales and sup-

presses the evolution with enstro-

phy initially decaying. So the helic-

ity density hhh is still mostly the

original positive value along the

vortex.

t = 4.4

Distortions before

reconnection.

Vorticity isosurface

contoured with

helicity flux Hf = −ω∇ΠHf = −ω∇ΠHf = −ω∇Π.

t = 5.6

During reconnection.
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Vorticity isosurface
contoured with
helicity.

Vorticity isosurface
contoured with

helicity flux HfHfHf .

t=2.8 is an unperturbed trefoil with

the three-fold symmetry. This

suppresses the evolution with enstro-

phy initially decaying. So the helic-

ity density hhh is still mostly the

original positive value along the

vortex.

t = 4.4

x ωm

+ um

444 max(H)

OOO min(H)

��� min(ω·∇Π)

x max(εZ)

/// min(Zp)

... max(Zp)

t = 5.6

During reconnection

• All maxes and mins are along

the vortex and, except for the

velocity maximum (green +),

are clustered around the tip-

ping points. Those points

where reconnection will eventu-

ally occur.

••• Now we focus on tipping

point in the x=y=-1 cor-

ner.
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Note that all maxes and mins (except maxH) are clustered

around the tipping points.

The focus now will be on the tipping point highlighted.

The view will be from the inside out. Helicity flux Hf = −ω∇ΠHf = −ω∇ΠHf = −ω∇Π.

18



= −ω·∇Π= −ω·∇Π= −ω·∇Π

Inside-out view

All t = 5.6

⇐ H

Hf ⇒
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What has been shown:

1. Extensions in time and Reynolds numbers of the two calculations of Kerr (2018b).

• A strongly perturbed trefoil vortex knot. • Long, perturbed anti-parallel vortices.

a) New: Both now have convergent dissipation rates ε(t)ε(t)ε(t) as ν→0.

b) k−5/3 inertial range spectra.

c) Dissipation anomalies, ∆E =
∫ T
0 ε dt=finite-dissipation in a fixed finite-

time T , are generated without singularities or roughness as ν → 0ν → 0ν → 0.

2. Unresolved mysteries from Kerr (2018b).

a) Why
√
νZ(t)
√
νZ(t)
√
νZ(t) converges at the reconnection time txtxtx.

b) Why does HHH increase at txtxtx.

c) Provide: Physical understanding for why increasing the domain size as
viscosity ννν decreases is necessary for maintaining

√
νZ(t)
√
νZ(t)
√
νZ(t) convergence .

(To complement the Mathematical reason based upon Constantin (1986).)

3. Answers??

a) A new role for negative H < 0 transported to the inner regions??

b) Dissipation of this H < 0 leads to an increase in helicity.

c) Which would remove the barrier from H > 0H > 0H > 0 which was blocking the
growth of small-scale enstrophy Z and dissipation εεε.
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Goals accomplished?

My new calculations are extensions in time and Reynolds numbers of the calculations in Kerr (2018b),

a strongly perturbed trefoil vortex knot and very long, flatly-perturbed anti-parallel vortices and the

goal is to extend those calculations into a regime with both convergent ε(t)ε(t)ε(t) as ν decreases and a k−5/3

inertial range spectrum at tε ≈ 2tx.

A common feature of both sets of calculations is that they are done in very large periodic domains,

with the domain size increasing as the viscosity ν decreases. The reasons given Kerr (2018b) are based

upon the mathematics of Constantin (1986), mathematics that can also help explain why symmetric

initial states can never provide the answers. To accommodate the large domains, the vortices of the

anti-parallel set are very long with a localised perturbation. For the trefoil knots, the initial helical

vortex state is confined within small volume, so it is mathematically compact.

Besides tracking the convergence of ε(t)ε(t)ε(t) as ν→0 and spectra, the exchange of circulation convergence

in the early reconnection phase is improved and there is new helicity analysis using the helicity flux

along vortex tubes and spectra. The figures below are from an extension of the ν = 7.8×10−6, Re =

Γ/ν = 64, 000 trefoil with tx ≈ 41 Kerr (2018b). During the trefoil’s reconnection phase the global

helicity barely changes, but both the physical and Fourier space analysis shows negative helicity being

transported to small scales, which is compensated for by positive helicity moving to large scales. Then,

during viscous reconnection, most of small-scale negative helicity is dissipated. Leaving behind an global

increase in the positive helicity. The strong perturbation is essential for achieving these results, as three-

fold symmetric trefoils suppress ε(t)ε(t)ε(t) growth much as close, periodic boundaries can suppress such growth

for anti-parallel vortices.
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= −ω·∇Π= −ω·∇Π= −ω·∇Π

Inside-out view

All t = 5.6

⇐ H

Hf ⇒
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t = 5.6t = 5.6t = 5.6

Negative helicity transport (cyan square) seems closely associated with
negative enstrophy production. What might this be telling us?
Hf < 0 where Zp < 0? At t = 0 for three-fold symmetric Zp < 0 dominates.
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YaoHussainJFM2020

The rate of change of

volume-integrated

kinetic energy

⇐ Left: From Yao/Hussain JFM (2020). Top:

|dE/dt| (◦ symbols) and energy dissipation

rate ε (lines) as function of t = t/(2πb2/Γ0),

b =initial separation. Converge and k−5/3

spectra at t∗ = 1.9. Bottom: (
√
νZ)−1/2.

Circulation-exchange and
√
νZ scaling begin at

t∗ = 1.5 with convergence to tx = t∗ = 1.8.

⇑ Above: Inset: Initially similar: Reconnec-

tion (Γ-exchange and
√
νZ scaling) begins later

t = 15, completes by t = 18. Full: However

convergence of ε and k−5/3 are much later

(tε ≈ 2tx), persist and not narrow.
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