Finite dissipation from helicity following reconnection
Robert M. Kerr University of Warwick

Underlying question:

e If one defines turbulence to be: The fluid motion responsible for the observed finite
time, Reynolds number (Re) independent, dissipation of finite energy AFE.

e And given: Compact initial conditions placed in whole space, infinite R3.
e [s there a mathematical barrier that blocks finite time AE forming as Re— 00?

— Without assuming finite-time singularities for the underlying equations.

e Further question: And if this barrier exists, as often claimed, could this be
seen numerically with new diagnostics?

Tool: I will address these questions using two classes of DNS: (Kerr , 2018b)

Strongly perturbed trefoil vortex knot Very long, flatly-perturbed anti-parallel vortices.
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Navie%(—Stokes reconnection. J. Fluid Mieels2s839, R2
1. The new calculations are turbulent by these standards:

a) Convergence of energy dissipation € and finite AE. b) k=5/3 gpectra.
2. What has broken the barrier?

a) Answer: Space. b) Why? ¢) It's associated with reconnection ending.
How?

3. Is helicity the barrier? a) And/Or: Does helicity break the barrier?



Extreme Events 19 May 2021
Finite dissipation from helicity following reconnection
Underlying question: Is there a mathematical barrier that blocks
e finite time AE Re — oo forming? To address with new extensions of Kerr (2018b).

1. The new calculations are turbulent by these standards:
a) Convergence of energy dissipation € and finite AFE.
b) And k™53 spectra.

2. What has broken the barrier?

a) Answer: Space. b) Why? ¢) It's associated with reconnection ending.

How?
3. Is helicity the barrier?
a) And/Or: Does helicity break the barrier?

Existing work/presentations:

Kerr, R.M. 2018b Enstrophy and circulation
scaling for Navier-Stokes reconnection. J.
Fluid Mech. 839, R2

See: https://video-archive.fields.utoronto.ca/view /10320



Trefoil
Experiment

How did I get started on non-anti-parallel?

<= Inspiration:: Helicity conservation by flow

across scales in reconnecting vortex links
and knots Proc. Nat. Acac. Sci. 111 (2014).
Scheeler, D. K., D. P., G. L. K., W. T. M. Irvine.

Primary diagnostics: Enstrophy and Helicity

Z(t):/ wdV H(t):/ u-wdV,
T} T}

Meaning: Enstrophy = dissipation ¢ = v/

Initial condition Meaning: Helicity: Knottedness.

, Global topological number?
t =6 Q-trefoil ||w|lec =1.13 Lg =3

w=0.63llwl
centerline Trefoils have three advantages.

—offset line
ol 1) Their helicity.
2) Reconnection
3) FOR MATHS: Compact initial state:

3 NS, WSy

e Idecal for investigating relationships between re-
connection, helicity and finite-time dissipation
AFE = fOT e dt, T finite.



Primary diagnostics: Enstrophy and Helicity

Z(t):/ wdV H(t):/ uwdV,
T} T}

Meaning: Enstrophy = dissipation e =vZ

Meaning: Helicity: Knottedness.
Global topological number?

Trefoils have three advantages.

t==6 Qtrefoﬂ ||w\|oo—113 Ls=3
: w—063||w|

1) Almost maximal helicity.

2) Reconnections rapid. L /- i

3) FOR MATHS: Compact initial state: N
Can be isolated in R?.

e Ideal for investigating relationships between reconnection, Caveat
helicity and finite-time dissipation AFE = fOT e dt, T finite.

Caveat One absolutely needs strongly perturbed trefoils.

e Reason the advantages fail if true, three-fold symmetric trefoils are used.
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Experiments: 4 -4-127-v=2e-6
. : : %ﬂ._t =40
Helicity preservation was claimed. o3

e The first dynamics are associated with
t, ~41.

- Helicity grows at t,.(Why?)

- Convergence of \/vZ at t,. (Why?)

100 150 200

t; = 41 can now be associated with reconnection ending.



Euler, on cubic torus T?,
i.e. 3 periodic domains. The vorticity w = V x u

g—? + (u-V)u = —Vp
0
a—?:—l—@.) ><u) = —VpPn
Ow
EJr(u-V)w:(w-V)quz/Aw, V-w=0.
the enstrophy density |w|? equation and the volume-integrated enstrophy Z are
O 2
|(;;| +(u-V)|w]*= 2wSw +rvAlw]*— 2u(Vw)® | 7 = /w2dV,

Zp=production ew=2 —dissipation

and the helicity density A equation and global helicity H are

h
8—+(u.V)h:;w-VH+ VAN, —2ytr(Vw-VuT) H :/u-de.
at TV '\f A -

TV
w—transport  p—transport ep,=H—dissipation

where IT = p — %uQ = pyp, is not the pressure head p, = p + %uQ.

Further diagnostics related to helicity. Scaled to have units of circulation.

e Sobolev norm of order 1/2: H él/ 2 o Square-root of helicity H/2.

e Cubic velocity normed: L3. e L3 independent of v implies Navier-Stokes regularity:.
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For: IT = p — %uz # pp (not pp = p + %u2)
e Viscous-v-transport is usually insignificant. My new diagnostics:
Colour-contour vorticity
isosurfaces with —w - VII.
e Only dissipation of +h or —h can change H. (and H-transfer-spectra)

e Vorticity-w-transport could be significant.



o on convergence of \/vZ scaling at t,.
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e True only so long as the domain

e Purpose of the extra curve:
° calculation uses the same small viscosity

v = 3.125e—5 as the green curve,

e but the domain is smaller, not (6m)>.
(Also Gibbon EPL (2020))

* A partial answer comes

from Constantin CMP
(1986) “Note on Loss
of Regularity for So-
lutions of the 3D
Incompressible Euler
and Related Equa-
tions”.

e With post-1986
C&F88 Maths.

e Both Z & e=vZ
e are bounded in
e fixed domains

e if Euler is regular.

Next: Dissipation € = vZ



e What happens to the dissipation € = vZ after the v/vZ cross at t = t, ~ 417
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Enstrophy 3D-spectra case Q-v=7.8e-6

o Z(k) ~ k'3
2
10° e With a transient overshooting during reconnection.
(Later time spectra available in this file.)
10°
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10™ B 3
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Is there any k'/? (1/3=-5/342) regime?



Very long, flatly-perturbed anti-parallel pair.

t < 14 Preliminary: Before reconnection. Recc.)nnectlon: Secondary
. vortices.
< Pair touch, s

form tent. (next) 2
Reconnected pair, = z,
separate and twist.
Low Reynolds=5000 .,
Details in Kerr (2018b).  °
New: Re=TI'/v=80,000.
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Anti-parallel dissipation in (67)° box
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Would like to contrast these results to: McKeown et al (2019); Yao & Hussain

(2020); But will just discuss the €(t) convergence for now.
See: https://video-archive.fields.utoronto.ca/view /10320 (April 2019 Fields Institute)
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e These spectra suggest some type shell model dynamics?

e Since thisis 3D-DNS, could physical space fluxes help in our understanding?
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t =2.8 is an unperturbed trefoil with the three-fold symmetry and thinner
core.

Different timescales and suppresses the evolution with enstrophy initially de-
caying. So the helicity density h is still mostly the original positive value
along the vortex.
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XYyl2pi512d015 v=1.6e-41=5.6 w =36 |w|=5.6

Note that all maxes and mins (except max H) are clustered

around the tipping points. 15
The focus now will be on the tipping point highlighted.

The view will be from the inside out. Helicity flux Hy = —wVIL.
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What has been shown:

1. Extensions in time and Reynolds numbers of the two calculations of Kerr (2018b).
e A strongly perturbed trefoil vortex knot. e Long, perturbed anti-parallel vortices.

a) New: Both now have convergent dissipation rates €(t) as v—0.
b) k75/3 inertial range spectra.

c) Dissipation anomalies, AE = fOT e dt=finite-dissipation in a fixed finite-
time I, are generated without singularities or roughness as v — 0.

2. Unresolved mysteries from Kerr (2018b).

a) Why /vZ(t) converges at the reconnection time t,.
b) Why does H increase at t,.

¢) Provide: Physical understanding for why increasing the domain size as
viscosity v decreases is necessary for maintaining /vZ(t) convergence .

(To complement the Mathematical reason based upon Constantin (1986).)

3. Answers??
a)
b) Dissipation of this H < 0 leads to an increase in helicity.

¢) Which would remove the barrier from H > 0 which was blocking the
growth of small-scale enstrophy Z and dissipation e.



Goals accomplished?

My new calculations are extensions in time and Reynolds numbers of the calculations in Kerr (2018b),
a strongly perturbed trefoil vortex knot and very long, flatly-perturbed anti-parallel vortices and the
goal is to extend those calculations into a regime with both convergent () as v decreases and a k=°/3
inertial range spectrum at t, = 2t,.

A common feature of both sets of calculations is that they are done in very large periodic domains,
with the domain size increasing as the viscosity v decreases. The reasons given Kerr (2018b) are based
upon the mathematics of Constantin (1986), mathematics that can also help explain why symmetric
initial states can never provide the answers. To accommodate the large domains, the vortices of the
anti-parallel set are very long with a localised perturbation. For the trefoil knots, the initial helical
vortex state is confined within small volume, so it is mathematically compact.

Besides tracking the convergence of €(t) as v — 0 and spectra, the exchange of circulation convergence
in the early reconnection phase is improved and there is new helicity analysis using the helicity flux
along vortex tubes and spectra. The figures below are from an extension of the v =7.8x107%, Re =
['/v = 64,000 trefoil with ¢, ~ 41 Kerr (2018b). During the trefoil’s reconnection phase the global
helicity barely changes, but both the physical and Fourier space analysis shows negative helicity being
transported to small scales, which is compensated for by positive helicity moving to large scales. Then,
during viscous reconnection, most of small-scale negative helicity is dissipated. Leaving behind an global
increase in the positive helicity. The strong perturbation is essential for achieving these results, as three-
fold symmetric trefoils suppress €(t) growth much as close, periodic boundaries can suppress such growth
for anti-parallel vortices.
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Negative helicity transport (cyan square) seems closely associated with
negative enstrophy production. What might this be telling us?
H; < 0 where Z, < 07 At t = 0 for three-fold symmetric Z, < 0 dominates.
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