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INTRODUCTION

Understand the nature of singularities in ideal hydrodynamics, and the weak solutions
that accompany them.
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INTRODUCTION

Understand the nature of singularities in ideal hydrodynamics, and the weak solutions
that accompany them.

• Investigate a finite time blow-up.

• Tracing singularities (z∗ = δ+ ιµ) by
Analyticity strip method.
- C. Sulem, P.L. Sulem, H.Frisch (1983).

|ũ(k, t)| ∼ k−n exp [−δ(t)k] , k� 1

(1)

Loss of regularity then would imply,

lim
t→t∗

δ(t) = 0 (2)

• With smooth initial conditions, numerically
solve the equations and extract δ(t) vs t.

Analyticity strip width for 3D Euler
- M.D. Bustamante & M.E. Brachet,

2012.
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INTRODUCTION

Understand the nature of singularities in ideal hydrodynamics, and the weak solutions
that accompany them.

Obstacle

In a truncated system with finite degrees
of freedom, as δ ∼ k−1

max, small scale structures
begin to thermalise implying,

E(k) ∼ kd−1

• Unreliable measurement of δ(t).

• 3D Euler - Still a conjecture

Goal

Providing a numerical prescription to
prevent the truncated solutions from
thermalising.

Analyticity strip width for 3D Euler
- M.D. Bustamante & M.E. Brachet,

2012.
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Obstacle

In a truncated system with finite degrees
of freedom, as δ ∼ k−1

max, small scale structures
begin to thermalise implying,

E(k) ∼ kd−1

• Unreliable measurement of δ(t).

• 3D Euler - Still a conjecture

Goal

Providing a numerical prescription to
prevent the truncated solutions from
thermalising.

Thermalisation in truncated 3D Euler
- C.Cichowlas et al., 2005
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INVISCID HYDRODYNAMICS - WEAK SOLUTIONS

1D Burgers equation

∂u

∂t
+u

∂u

∂x
= 0

• Formation of shock in finite time.
Singularity in du

dx .
Burgers, 1974; Hopf, 1950; Cole, 1951; Fournier &

U.Frisch, 1983.
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Entropy solution

• Viscous Burgers equation shows anamalous
dissipation as ν→ 0.

• Entropy solution - dissipates weakly through
these shocks - identical to the vanishing
viscosity limit.

• Although truncated inviscid equation
thermalises and differs radically from the
entropy solution.
S.S. Ray et al., 2011; P.C. Di Leoni et al., 2018

3D Incompressible Euler equation

∂u

∂t
+ u ·∇u = −∇P, ∇ · u = 0

• Do the solutions blow up in finite time -
Unanswered.
L. Onsager, 1949: S. Orszag et al., 1983; J.T.

Beale et al., 1984; M.D. Bustamante & M.E.

Brachet, 2012.

• Navier-Stokes equation shows anamalous
dissipation too.

• Numerical studies to trace the singularity,
fails as the truncated Euler equations
thermalise in finite time.
C. Cichowlas et al., 2004,2005; W.J.T. Bos & J.P.

Bertoglio, 2007
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THERMALISATION IN INVISCID BURGERS EQUATION

Inviscid Burgers Equation

Numerical integration performed with pseudo
spectral method on a Galerkin-truncated system

v(x) = PkG
[u(x)] =

∑
|k|<kG

ûke
ιkx

∂v

∂t
+ PkG

1

2

∂v2

∂x
= 0
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THERMALISATION IN INVISCID BURGERS EQUATION

Inviscid Burgers Equation

Numerical integration performed with pseudo
spectral method on a Galerkin-truncated system

v(x) = PkG
[u(x)] =

∑
|k|<kG

ûke
ιkx

∂v

∂t
+ PkG

1

2

∂v2

∂x
= 0

Finite number of modes, unable to develop small
scale structures (beyond kG). Resonates
non-locally into what’s termed as Tygers as
t→ t∗.

(top) Birth of tyger, (bottom) showing discrepancy
-S.S. Ray et al., 2011
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THERMALISATION IN INVISCID BURGERS EQUATION

Inviscid Burgers Equation

Numerical integration performed with pseudo
spectral method on a Galerkin-truncated system

v(x) = PkG
[u(x)] =

∑
|k|<kG

ûke
ιkx

∂v

∂t
+ PkG

1

2

∂v2

∂x
= 0

Finite number of modes, unable to develop small
scale structures (beyond kG). Resonates
non-locally into what’s termed as Tygers as
t→ t∗.

At t� t∗, fully thermalised solution with
Gibbsian distribution, conserving energy. No
shocks, No dissipation.
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(dotted) Initial condition,(blue) truncated solution,
(black) entropy solution

- S.D. Murugan et al., 2020.

PDF of thermalised velocity
- S.D. Murugan, (unpub )
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NUMERICAL RECIPE TO SUPPRESS THERMALISATION

Tyger Purging - S.D.Murugan, U. Frisch, S. Nazarenko, N. Besse, and S.S. Ray, Phys. Rev. Research 2,

033202(2020)

In a truncated Burgers equation, implement a selective removal of a narrow fourier space
boundary layer ∆k near kG at discrete time intervals τ from the truncated solution.

• Intend to reset the energy cascade into the boundary layer after purging, mimicking a
pre-shock.

• Temporal discreteness is key to counteract the truncation. Purging too soon or too late -
effectiveness fades.
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Tyger Purging - S.D.Murugan, U. Frisch, S. Nazarenko, N. Besse, and S.S. Ray, Phys. Rev. Research 2,

033202(2020)

In a truncated Burgers equation, implement a selective removal of a narrow fourier space
boundary layer ∆k near kG at discrete time intervals τ from the truncated solution.

• With the ansatz, parametrised by α,β

∆k = kβG , τ = k−αG (1)

• The numerical prescription to mildy modify the Galerkin-truncated equations to obtain
solutions that do not thermalise,

∂w

∂t
+ PkG

1

2

∂w2

∂x
= 0 (2)

tp = nτ,n ∈ Z; ŵk :≡ 0, ∀kP 6 k 6 kG (3)

• Intend to reset the energy cascade into the boundary layer after purging, mimicking a
pre-shock.

• Temporal discreteness is key to counteract the truncation. Purging too soon or too late -
effectiveness fades.
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NUMERICAL RECIPE TO SUPPRESS THERMALISATION

Tyger Purging - S.D.Murugan, U. Frisch, S. Nazarenko, N. Besse, and S.S. Ray, Phys. Rev. Research 2,

033202(2020)

In a truncated Burgers equation, implement a selective removal of a narrow fourier space
boundary layer ∆k near kG at discrete time intervals τ from the truncated solution.

• Intend to reset the energy cascade into the boundary layer after purging, mimicking a
pre-shock.
• Temporal discreteness is key to counteract the truncation. Purging too soon or too late -

effectiveness fades.

Converging to correct dissipation rate

In the study of Tygers (S.S. Ray et al., 2011), the envelope of oscillations in the discrepancy
between entropy and truncated solution Fourier modes near kG at the preshock time behaves as

|v̂k| ∼
1

kG
exp

[
−
c

k
1/3
G

(kG − k)

]

Deducing a scaling for numerical dissipation by purging on kG, leading to -

β ∈ [
1

3
, 1), α+β / 2

Necessary, Not sufficient. For e.g, α = 0.6,β = 0.4 does not work, but α = β = 0.8 work.
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RESULTS - PURGED SOLUTIONS

(a) Unsuccessful purging α = 0.6,β = 0.4, (b) Successful purging
α = β = 0.8 - S.D.Murugan, U. Frisch, S. Nazarenko, N. Besse, and S.S. Ray,

Phys. Rev. Research 2, 033202 (2020)

Success of purging is irrespective of initial conditions, given kG � 1,τ� δt.
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RESULTS - PURGED SOLUTIONS

(a) Energy decay of purged solution (dashed showing for Entropy solution) (b) Relative error -
S.D.Murugan, U. Frisch, S. Nazarenko, N. Besse, and S.S. Ray, Phys. Rev. Research 2, 033202

(2020)

Purged solution picks-out correctly the shock strength, location, and velocity and merging of
shocks.
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RESULTS & CONCLUSION

The energy stored in those early tygers
converges to the energy dissipated by the weak
solution within the purging time, implying

∆E(t = nτ) =

∫t
t−τ
εdt′

• The understanding of tygers as the source
of thermalisation (S.S. Ray et al., 2011) is
what allowed to devise this numerical recipe
to suppress it.

• Wavelet based filtering techniques can also
be used to suppress thermalisation and
recover true solutions, but computationaly
expensive compared to purging.
- R.N. Van Yen et al., 2008; Pereira et al.,

2013.
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Energy in the boundary layer for the
purged solution (red) and the extreme
dissipation from the weak solution
(black) - S.D. Murugan, (Unpub.)
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CONCLUSION & FUTURE WORKS

Weak solutions in 3D Euler

• To implement purging in truncated 3D Euler equations, we note
Analogous 3D Tygers are not well known and understood.
Non-local interactions - pressure.
Navier-Stokes with Re→∞ - intermittent explained by multifractality. Burgers being
bifractal.

• Nevertheless successful suppression of thermalisation implies,
Better numerical insights towards the celebrated finite time blow-up problem.
DNS with Re = ∞ with clear inertial range E(k) ∼ k−5/3 even for smaller resolutions
with sub-grid scale modeling.
Singularity spectrum f(α) in the multifractal analysis for the obtained weak solutions.
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THERMALISATION IN 3D EULER

3D Incompressible Euler equation

• In truncated 3D Euler, thermalisation first discovered by T.D. Lee, 1952, further developed by
R.H.Kraichnan, 1967,1973.

• In recent years, (DNS at high resolution) studied by C. Cichowlas et al., 2005; M.E. Brachet et

al., 2008,2009.

• All the studies were in spectral space.

spectrum at different times showing growth of thermalisation - S.D. Murugan - (Unpub.) , see also C. Cichowlas

et al., 2005
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THERMALISATION IN 3D EULER

Visualizing thermalisation in Real space

• Strain tensor is related to the vorticity field.

Sij =
3

8π

∫
dx′

(
εiklrj + εjklri

) rk
r5
ωl(x′)

• Decomposing the strain into local and background components, P.E. Hamlington et al., 2008.

Sloc ≈ −
R2

10
∇2S
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THERMALISATION IN 3D EULER
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Local strain components Sxx showing the onset (left), growth(right) of
thermalisation - S.D. Murugan (Unpub.)
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Thank you,
Stay Home, Stay Safe.
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