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local flame extinction

Intense dissipation (or strain-rate)

critical in many applications
𝜀 – viscous dissipation rate
Sij – strain-rate tensor𝜀 = 2𝜈𝑆&'𝑆&'

ESAUS Dept Energy

droplet collision astro-chemistry

flame front thinning
[Karami et al. 2017 Proc Comb Inst] 

~60% collisions in strain regions 
[Perrin & Jonker 2016 JFM] 
Collision rate depends on dissipation rate
[Franklin et al. 2005 J Atm Sci]

heating source
[Godard et al. 2009 A&A] 
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Extreme dissipation is strongly 
Reynolds number dependent

• Reliable data available only at low Re𝜆 ≤ 1100 (DNS)
• Need theories for extrapolation to higher Re𝜆 (e.g. atmosphere)
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Define maximum dissipation-rate 
in a flow volume
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• Account for the increase in the number of small-scale structures as Re𝜆 increases 
-> histogram for a (5L)3 volume sampled at 3𝜂 intervals in each direction



5

Challenge: theories and fits are 
inaccurate
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Figure uses DNS data from:
Ishihara et al. 2007 JFM
Ishihara et al. 2016 Phys Rev Fluids

Some of which has been 
extended in terms of enhanced 
resolution (kmax𝜂=2-4) or longer 
time integration
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Challenge: theories and fits are 
inaccurate
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low Re𝜆 theory:

velocity gradients scale 
according to U/𝜂

hence:

consistent with observed 
scaling of velocity 
gradients associated with 
intense vortices
[Jiménez et al. 1993 JFM]

𝜀123~𝑅𝑒7
8

good fit
at low Re𝜆

does not fit data
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Challenge: theories and fits are 
inaccurate
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Challenge: theories and fits are 
inaccurate
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Multifractal theory:

[e.g. Paladin & Vulpiani 1987, 
Sreenivasan & Meneveau
1988, Yakhot & Sreenivasan
2005]

Does not fit the data

Perhaps in the limit of
?

𝜀123~𝑅𝑒7
9

𝑅𝑒7 → ∞
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Challenge: theories and fits are 
inaccurate
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~Re𝜆
better fit

Power law fit

[see also Buaria et al. 2019]

However, constant power 
does not fit the data

also highest Re𝜆 seems to 
deviate slightly

-> exponent increases 
gradually with Re𝜆
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Challenge: extrapolation
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atmosphere astrophysical

3 orders 
of magnitude

Extrapolation is 
questionable since 
theories and power law fit 
do not accurately describe 
the data

Large uncertainties at 
atmospheric and 
astrophysical conditions
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Aim

• Develop new and more accurate model for dissipation extremes

• Use knowledge of turbulent structures, large-scale shear layers in particular
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!

Large-scale shear layers
also known as significant shear layers

Instantaneous flow Re𝜆 = 1100
[Ishihara, Kaneda & Hunt 2013]

Statistical evidence and Re𝜆 dependence
[Elsinga et al. 2017]

Intense 
dissipation (red) 
and vortices (green) 
cluster in these 
large-scale shear 
layers
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Conditional average dissipation-rate
[Ishihara, Kaneda & Hunt 2013]

outside layer inside

𝜀
</
𝜀

~7 times 
higher

Large-scale shear layers -
elevated levels of local mean dissipation



13

Map of velocity increments 
over a short distance 
(proxy for shear rate)

Polaris Flare (Re𝜆 ~ 105)
[Hennebelle & Falgarone 2012]
[Hily-Blant et al. 2008]

Large-scale shear layers -
at very high Reynolds numbers

2∙1016 m
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Modelling step 1 
intermittency

Volume occupied by layers V* relative to entire volume V:

𝑉∗

𝑉
∝
𝜆A𝐿9

𝐿+
=
𝜆A
𝐿

=>
𝑉∗

𝑉
= 𝛼C8𝑅𝑒7

C8

where
L – integral length scale
𝜆T – Taylor scale
𝛼 – coefficient

𝛼 = 0.010, which is consistent with 4𝜆T thick 
layers and L wide large-scale regions
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Modelling step 2 
local average dissipation rate

Define:
• background dissipation rate (constant over entire volume),

• dissipation rate averaged over the layer, 𝜀*

Balance:
𝜀 𝑉 = 𝜀∗ − 𝜀EF 𝑉∗ + 𝜀EF𝑉

=>

coefficient b = 0.67, which is consistent with
𝜀*/𝜀bg = 6.4 at Re𝜆 = 1100
[Ishihara, Kaneda & Hunt 2013]

𝜀EF = 𝑏 𝜀

total     =       excess in layers       + background

𝜀∗ = 𝜀 𝑏 + (1 − 𝑏)𝛼𝑅𝑒7
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Modelling step 3 
layer turbulence & substructures

The significant shear layers are turbulent, which is characterized 
by a local Reynolds number, Re𝜆*

Define:
• local integral scale:

• local Kolmogorov scale:

This range of scales defines a Re𝜆*:

where
𝜂 – global Kolmogorov length scale
D – normalized mean dissipation rate

𝐿∗ = 𝜆A Such that 4L* fit across the layer

𝜂∗ = 𝜂
𝜀
𝜀∗

8/L

𝑅𝑒7∗ = 15+/L𝐷C8
𝐿∗

𝜂∗
9/+
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Modelling step 3 
layer turbulence & substructures

The significant shear layers appear fully developed 
when Re𝜆 = 250   [Elsinga et al. 2017 JFM]
or underdeveloped when Re𝜆 = 150   [Elsinga & Marusic 2010 JFM]

Similarly, sublayers develop with significant shear layer 
when Re𝜆* = 150 (corresponding to Re𝜆 = 1560)

… and when Re𝜆* = 1560 (corresponding to Re𝜆 = 1.8·105) 
sub-sublayers develop within the sublayers

… and so on …
[note: some evidence of sublayers is provided by observations in 
molecular clouds, see Falgarone et al. 2009 A&A]
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Modelling step 3 
layer turbulence & substructures

significant shear layers
Re𝜆 > 150

sublayers
Re𝜆 > 1560

sub-sublayers
Re𝜆 > 1.8·105

[note: for illustration only, (sub)layers are not to scale]
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Modelling step 3 
layer turbulence & substructures

The conditions in the sublayers follow the same relations as 
developed for the significant shear layers

simply use the local conditions
replacing Re𝜆 with Re𝜆*, <𝜀> with 𝜀*, etc…

For example,

becomes

𝜀∗ = 𝜀 𝑏 + (1 − 𝑏)𝛼𝑅𝑒7

𝜀MNEO2PQR∗ = 𝜀∗ 𝑏 + (1 − 𝑏)𝛼𝑅𝑒7∗
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Results 
intermittency
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Results 
local average dissipation rate
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Modelling step 4 
convolve with lognormal distribution 

& obtain overall dissipation-rate PDF

The local PDF of the dissipation-rate for each flow region (background, significant 
shear layer, sublayer, …) is given by a lognormal distribution centered on the local 
average dissipation-rate

The overall PDF is the volume weighted average of these local PDFs.
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Example shows Re𝜆 = 105

convolution volume weighting sum
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Results 
overall dissipation-rate PDF
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Results 
Reynolds number effect
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Results 
Maximum dissipation-rate
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lognormal
Kolmogorov 1962

model

constant 
power law fit
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model accurately predicts the Re𝜆 scaling 
exponent 
(this refers to the magnitude of the 
exponent AND its development with Re𝜆)
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Results 
Infinite Reynolds number limit
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model In the limit of

additional layered substructure 
develops and the model 
ultimately approaches
Multifractal theory:

However,
is reached only 

when Re𝜆 ≈ 1040

Consequently, finite value Re𝜆
remains important in any real 
application

𝜀123~𝑅𝑒7
9

𝑅𝑒7 → ∞

𝜀123~𝑅𝑒7
8.TU
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Conclusions

Significant shear layers are intrinsic to explanation & 
quantification of extreme dissipation
Model needs to incorporate relation between large and small scale 
AND smallest scale is not η

Our model accurately predicts the magnitude of Re𝜆
scaling exponent AND its development with Re𝜆 over 
the range where data is available

Predict the development of sublayers and sub-sublayers 
at (very) high Reynolds numbers

[Elsinga, Ishihara & Hunt (2020) Proc. R. Soc. A]
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