Extreme dissipation at very high
Reynolds number
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S — strain-rate tensor

local flame extinction droplet collision
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flame front thinning ~60% collisions in strain regions
[Karami et al. 2017 Proc Comb Inst] [Perrin & Jonker 2016 JFM]

Intense diSSipatiOl’l (or strain-rate)
critical in many applications

c=2v Sij Sij & — viscous dissipation rate

astro-chemistry

heating source
[Godard et al. 2009 A&A]

Collision rate depends on dissipation rate

1,';U Delft [Franklin et al. 2005 J Atm Sci]




Extreme dissipation is strongly
Reynolds number dependent

» Reliable data available only at low Re, < 1100 (DNS)
» Need theories for extrapolation to higher Re, (e.g. atmosphere)
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Define maximum dissipation-rate
in a flow volume

» Account for the increase in the number of small-scale structures as Re, increases
-> histogram for a (5L)3 volume sampled at 37 intervals in each direction
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Challenge: theories and fits are
inaccurate

/<e>

L 1 Figure uses DNS data from:
& [ ¢ | Ishihara et al. 2007 JFM
Ishihara et al. 2016 Phys Rev Fluids
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S | Some of which has been
10!+ 1 extended in terms of enhanced
’ | resolution (k,,n=2-4) or longer
u B time integration
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good fit
at low Re,

does not fit data

10

Re

Challenge: theories and fits are
inaccurate

low Re, theory:

velocity gradients scale
according to U/n

1
hence: &max~Re)

consistent with observed
scaling of velocity
gradients associated with

intense vortices
[Jiménez et al. 1993 JFM]
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Challenge: theories and fits are
inaccurate

0 Multifractal theory:
SmaxNRe/%
[e.g. Paladin & Vulpiani 1987,
A 2| Sreenivasan & Meneveau
v 107 1988, Yakhot & Sreenivasan
e | 2005]
qu
Does not fit the data
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10 ; Perhaps in the limit of
- n Re; » o0 ?
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Challenge: theories and fits are
inaccurate

100

Power law fit

[see also Buaria et al. 2019]

However, constant power
does not fit the data

1 | also highest Re, seems to
1000 71 1 deviate slightly

- 7 ~Re, :

i better fit

-> exponent increases

10° 10° gradually with Re,
Re
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atmosphere astrophysical

Challenge: extrapolation

10" .
: Extrapolation is
s questionable since
10" = 1 theories and power law fit
i Bl do not accurately describe
108 ¢ o gg 3 the data
8 g |82
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I 3 orders . atmospheric and
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Aim

» Develop new and more accurate model for dissipation extremes

» Use knowledge of turbulent structures, large-scale shear layers in particular
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Large-scale shear layers

also known as significant shear layers

Intense
dissipation (red)
and vortices (green)
cluster in these
large-scale shear
layers
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Instantaneous flow Re; = 1100 Statistical evidence and Re, dependence
[Ishihara, Kaneda & Hunt 2013] [Elsinga et al. 2017]
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Large-scale shear layers -
elevated levels of local mean dissipation
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Conditional average dissipation-rate
[Ishihara, Kaneda & Hunt 2013]
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Large-scale shear layers -
at very high Reynolds numbers
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Modelling step 1

intermittency

Volume occupied by layers 1'* relative to entire volume 7

7 x R => v Rej
where

L — integral length scale
A — Taylor scale
a — coefficient

a = 0.010, which is consistent with 44, thick
layers and L wide large-scale regions
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Modelling step 2

local average dissipation rate

Define:
» background dissipation rate (constant over entire volume),

€pg = b(e)
» dissipation rate averaged over the layer, &*

Balance:
— * *
(e)V = (e — ebg)V + &gV
total = excess in layers + background
=> ¢&"=(e)lb+ (1 —-Db)aRey]
coefficient » = 0.67, which is consistent with
£/ &,, = 6.4 at Re, = 1100
[Ishihara, Kaneda & Hunt 2013]
<3
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Modelling step 3

layer turbulence & substructures

The significant shear layers are turbulent, which is characterized
by a local Reynolds number, Re,"

Define:
e local integral scale: L" = Ap Such that 4L* fit across the layer

<€> 1/4
e local Kolmogorov scale: n* =1 (€*>

This range of scales defines a Re,™:

L* 2/3
Re," = [153/40-1—*]
n where

7 — global Kolmogorov length scale
% D — normalized mean dissipation rate
TUDelft P
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Modelling step 3

layer turbulence & substructures

The significant shear layers appear fully developed
when Re, =250 [Elsinga et al. 2017 JFM]
or underdeveloped when Re, = 150 [Elsinga & Marusic 2010 JFM]

Similarly, sublayers develop with significant shear layer
when Re,” = 150 (corresponding to Re, = 1560)

... and when Re,” = 1560 (corresponding to Re, = 1.8-10°)
sub-sublayers develop within the sublayers

...and so on ...

[note: some evidence of sublayers is provided by observations in
molecular clouds, see Falgarone et al. 2009 A&A]
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Modelling step 3

layer turbulence & substructures

significant shear layers sublayers sub-sublayers
Re, > 150 Re; > 1560 Re, > 1.8-10°

'i';u Delft [note: for illustration only, (sub)layers are not to scale] 18




Modelling step 3

layer turbulence & substructures

The conditions in the sublayers follow the same relations as
developed for the significant shear layers

simply use the local conditions
replacing Re, with Re,”, <&> with &*, etc...

For example,

e* =(e)[b+ (1 —b)aRe,]
becomes
E;ublayer =¢&*|b + (1- b)aRe/l*]
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Results
intermittency
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Volume fraction
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Results
local average dissipation rate
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Modelling step 4

convolve with lognormal distribution
& obtain overall dissipation-rate PDF

The local PDF of the dissipation-rate for each flow region (background, significant

shear layer, sublayer, ...) is given by a lognormal distribution centered on the local
average dissipation-rate

The overall PDF is the volume weighted average of these local PDFs.

convolution volume weighting sum
—_— —_— —_—
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Results
overall dissipation-rate PDF
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Results
Reynolds number effect
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Results

Maximum dissipation-rate

atmosphere

astrophysical

T

T
T

model

 constant
. power law fit

model accurately predicts the Re, scaling

exponent

(this refers to the magnitude of the
exponent AND its development with Re,)
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Results

atmosphere astrophysical

/<e>

€

model

Infinite Reynolds number limit

In the limit of Rey — oo

additional layered substructure
develops and the model
ultimately approaches
Multifractal theory:

2
Emax~Re;

However,

emax~Rex?® is reached only

when Re, =~ 1040

Consequently, finite value Re,
remains important in any real
application

2
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Conclusions

Significant shear layers are intrinsic to explanation &
quantification of extreme dissipation

Model needs to incorporate relation between large and small scale

AND smallest scale is not n

Our model accurately predicts the magnitude of Re, Re,
scaling exponent AND its development with Re, over
the range where data is available

Predict the development of sublayers and sub-sublayers
at (very) high Reynolds numbers
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