Extreme dissipation at very high Reynolds number

<u>G.E. Elsinga¹</u>, T. Ishihara² & J.C.R. Hunt³

¹ Delft University of Technology, Laboratory for Aero & Hydrodynamics
 ² Okayama University, Graduate School of Environmental and Life Science
 ³ University college London, Department of earth Sciences

Intense dissipation (or strain-rate) critical in many applications

 $\varepsilon = 2\nu S_{ij} S_{ij}$

 ε – viscous dissipation rate S_{ii} – strain-rate tensor

Extreme dissipation is strongly Reynolds number dependent

- Reliable data available only at low $Re_{\lambda} \leq 1100$ (DNS)
- Need theories for extrapolation to higher Re_{λ} (e.g. atmosphere)

Define maximum dissipation-rate in a flow volume

• Account for the increase in the number of small-scale structures as Re_{λ} increases -> **histogram** for a (5*L*)³ volume sampled at 3 η intervals in each direction

Figure uses DNS data from: Ishihara et al. 2007 JFM Ishihara et al. 2016 Phys Rev Fluids

Some of which has been extended in terms of enhanced resolution ($k_{max}\eta$ =2-4) or longer time integration

low Re_{λ} theory:

velocity gradients scale according to U/η

hence: $\varepsilon_{max} \sim Re_{\lambda}^{1}$

consistent with observed scaling of velocity gradients associated with intense vortices [Jiménez et al. 1993 JFM]

Challenge: extrapolation

Extrapolation is questionable since theories and power law fit do not accurately describe

the data

Large uncertainties at

atmospheric and astrophysical conditions

Aim

• Develop new and more accurate model for dissipation extremes

• Use knowledge of turbulent structures, large-scale shear layers in particular

Large-scale shear layers

also known as significant shear layers

ŤUDelft

Large-scale shear layers elevated levels of local mean dissipation

Large-scale shear layers at very high Reynolds numbers

TUDelft

Map of velocity increments over a short distance (proxy for shear rate)

Polaris Flare ($Re_{\lambda} \sim 10^5$) [Hennebelle & Falgarone 2012] [Hily-Blant et al. 2008]

Modelling step 1 intermittency

Volume occupied by layers V^* relative to entire volume V:

$$\frac{V^*}{V} \propto \frac{\lambda_T L^2}{L^3} = \frac{\lambda_T}{L} \qquad = > \qquad \frac{V^*}{V} = \alpha^{-1} R e_{\lambda}^{-1}$$

where

$$L$$
 – integral length scale
 λ_T – Taylor scale
 α – coefficient

 $\alpha = 0.010$, which is consistent with $4\lambda_T$ thick layers and *L* wide large-scale regions

Modelling step 2 local average dissipation rate

Define:

background dissipation rate (constant over entire volume),

 $\varepsilon_{bg} = b\langle \varepsilon \rangle$

• dissipation rate averaged over the layer, ε^*

Balance:

$$\langle \varepsilon \rangle V = (\varepsilon^* - \varepsilon_{bg})V^* + \varepsilon_{bg}V$$

total = excess in layers + background

 $= > \quad \varepsilon^* = \langle \varepsilon \rangle [b + (1 - b) \alpha R e_{\lambda}]$

coefficient b = 0.67, which is consistent with $\varepsilon^* / \varepsilon_{bg} = 6.4$ at $Re_{\lambda} = 1100$ [Ishihara, Kaneda & Hunt 2013]

The significant shear layers are turbulent, which is characterized by a local Reynolds number, Re_{λ}^{*}

Define:

- local integral scale: $L^* = \lambda_T$ Such that $4L^*$ fit across the layer
- local Kolmogorov scale: $\eta^* = \eta \left(\frac{\langle \varepsilon \rangle}{\varepsilon^*}\right)^{1/4}$

This range of scales defines a Re_{λ}^{*} :

$$Re_{\lambda}^{*} = \left[15^{3/4}D^{-1}\frac{L^{*}}{n^{*}}\right]^{2/3}$$

where

 η – global Kolmogorov length scale

D – normalized mean dissipation rate

16

The significant shear layers appear fully developed when $Re_{\lambda} = 250$ [Elsinga et al. 2017 JFM] or underdeveloped when $Re_{\lambda} = 150$ [Elsinga & Marusic 2010 JFM]

Similarly, sublayers develop with significant shear layer when $Re_{\lambda}^{*} = 150$ (corresponding to $Re_{\lambda} = 1560$)

... and when $Re_{\lambda}^{*} = 1560$ (corresponding to $Re_{\lambda} = 1.8 \cdot 10^{5}$) sub-sublayers develop within the sublayers

... and so on ...

[note: some evidence of sublayers is provided by observations in molecular clouds, see Falgarone et al. 2009 A&A]

[note: for illustration only, (sub)layers are not to scale]

The conditions in the **sublayers follow the same relations** as developed for the significant shear layers

simply **use the local conditions** replacing Re_{λ} with Re_{λ}^{*} , $\langle \varepsilon \rangle$ with ε^{*} , etc...

For example,

$$\varepsilon^* = \langle \varepsilon \rangle [b + (1 - b) \alpha R e_{\lambda}]$$

becomes

$$\varepsilon_{sublayer}^* = \varepsilon^* [b + (1 - b)\alpha R e_{\lambda}^*]$$

Results intermittency

Results local average dissipation rate

21

Modelling step 4 convolve with lognormal distribution & obtain overall dissipation-rate PDF

The local PDF of the dissipation-rate for each flow region (background, significant shear layer, sublayer, ...) is given by a lognormal distribution centered on the local average dissipation-rate

The overall PDF is the volume weighted average of these local PDFs.

Results overall dissipation-rate PDF

Results Reynolds number effect

Results Maximum dissipation-rate

Results Infinite Reynolds number limit

In the limit of $Re_{\lambda} \rightarrow \infty$

additional layered substructure develops and the model ultimately **approaches Multifractal theory**:

$$\varepsilon_{max} \sim Re_{\lambda}^2$$

However,

 $\varepsilon_{max} \sim Re_{\lambda}^{1.95}$ is reached only when $Re_{\lambda} \approx 10^{40}$

Consequently, finite value Re_{λ} remains important in any real application

Conclusions

UDelft

Significant shear layers are intrinsic to explanation & quantification of extreme dissipation Model needs to incorporate relation between large and small scale AND smallest scale is not η

Our model accurately predicts the **magnitude** of Re_{λ} scaling exponent AND its **development** with Re_{λ} over the range where data is available

Predict the development of sublayers and sub-sublayers at (very) high Reynolds numbers

<u>Funding and computational resources</u> JSPS KAKENHI, MEXT and JHPCN Joint Research Projects <u>email</u> g.e.elsinga@tudelft.nl

[Elsinga, Ishihara & Hunt (2020) Proc. R. Soc. A]