Extreme dissipation at very high Reynolds number

$G.E.$ Elsinga¹, T. Ishihara² & J.C.R. Hunt³

¹ Delft University of Technology, Laboratory for Aero & Hydrodynamics ² Okayama University, Graduate School of Environmental and Life Science ³ University college London, Department of earth Sciences

Intense dissipation (or strain-rate) critical in many applications

 ε – viscous dissipation rate $\varepsilon = 2\nu S_{ij}S_{ij}$ $\sum_{S_{ij}}^{\varepsilon -}$ viscous dissipation

Extreme dissipation is strongly Reynolds number dependent

- Reliable data available only at low $Re_{\lambda} \le 1100$ (DNS)
- Need theories for extrapolation to higher $Re₂$ (e.g. atmosphere)

Define maximum dissipation-rate in a flow volume

• Account for the increase in the number of small-scale structures as Re_{λ} increases \rightarrow **histogram** for a (5*L*)³ volume sampled at 3 η intervals in each direction

Figure uses DNS data from: Ishihara et al. 2007 JFM Ishihara et al. 2016 Phys Rev Fluids

Some of which has been extended in terms of enhanced resolution $(k_{max}p=2-4)$ or longer time integration


```
low Re<sub>2</sub> theory:
```
velocity gradients scale according to U/η

hence: $\varepsilon_{max} \sim Re_{\lambda}^1$

consistent with observed scaling of velocity gradients associated with intense vortices [Jiménez et al. 1993 JFM]

Challenge: extrapolation

Extrapolation is questionable since theories and power law fit do not accurately describe the data

Large uncertainties at

atmospheric and astrophysical conditions

Aim

• Develop new and more accurate model for dissipation extremes

• Use knowledge of turbulent structures, large-scale shear layers in particular

Large-scale shear layers

also known as significant shear layers

TUDelft

Large-scale shear layers elevated levels of local mean dissipation

Large-scale shear layers at very high Reynolds numbers

Modelling step 1 intermittency

Volume occupied by layers *V** relative to entire volume *V*:

$$
\frac{V^*}{V} \propto \frac{\lambda_T L^2}{L^3} = \frac{\lambda_T}{L} \qquad \Longrightarrow \qquad \frac{V^*}{V} = \alpha^{-1} Re_{\lambda}^{-1}
$$

where
$$
L
$$
 – integral length scale λ_T – Taylor scale α – coefficient

 α = 0.010, which is consistent with $4\lambda_T$ thick layers and *L* wide large-scale regions

Modelling step 2 local average dissipation rate

Define:

• background dissipation rate (constant over entire volume),

 $\varepsilon_{bg} = b\langle \varepsilon \rangle$

• dissipation rate averaged over the layer, ε^*

Balance:

$$
\langle \varepsilon \rangle V = \big(\varepsilon^* - \varepsilon_{bg}\big)V^* + \varepsilon_{bg}V
$$

total = excess in layers + background

 $\epsilon^* = \frac{\varepsilon}{1 - b} \alpha R e_\lambda$

coefficient $b = 0.67$, which is consistent with $\varepsilon^{*}/\varepsilon_{he} = 6.4$ at $Re_{\lambda} = 1100$ [Ishihara, Kaneda & Hunt 2013]

The significant shear layers are turbulent, which is characterized by a local Reynolds number, Re_λ^*

Define:

- local integral scale: $L^* = \lambda_T$ Such that $4L^*$ fit across the layer $1/4$
- local Kolmogorov scale: $\eta^* = \eta$ \mathcal{E}_{0}^{2} ε^*

This range of scales defines a *Re* *:

$$
Re_{\lambda}^* = \left[15^{3/4}D^{-1}\frac{L^*}{\eta^*}\right]^{2/3}
$$

where

 η – global Kolmogorov length scale

D – normalized mean dissipation rate

The significant shear layers appear fully developed when $Re_1 = 250$ [Elsinga et al. 2017 JFM] or underdeveloped when $Re_{\lambda} = 150$ [Elsinga & Marusic 2010 JFM]

Similarly, sublayers develop with significant shear layer when $Re_\lambda^{\;\,*} = 150$ (corresponding to $Re_\lambda^{} = 1560$)

... and when $Re_{\lambda}^* = 1560$ (corresponding to $Re_{\lambda} = 1.8 \cdot 10^5$) sub-sublayers develop within the sublayers

… and so on …

[note: some evidence of sublayers is provided by observations in molecular clouds, see Falgarone et al. 2009 A&A]

[note: for illustration only, (sub)layers are not to scale]

The conditions in the **sublayers follow the same relations** as developed for the significant shear layers

simply **use the local conditions** replacing Re_λ with Re_λ^* , \lessdot with ε^* , etc...

For example,

$$
\varepsilon^* = \langle \varepsilon \rangle [b + (1 - b)\alpha Re_\lambda]
$$

becomes

$$
\varepsilon_{sublayer}^* = \varepsilon^*[b + (1-b)\alpha Re_\lambda^*]
$$

Results intermittency

 $\widetilde{\mathbf{T}}$ UDelft

Results local average dissipation rate

 $\widetilde{\mathbf{T}}$ UDelft

Modelling step 4 convolve with lognormal distribution & obtain overall dissipation-rate PDF

The local PDF of the dissipation-rate for each flow region (background, significant shear layer, sublayer, …) is given by a lognormal distribution centered on the local average dissipation-rate

The overall PDF is the volume weighted average of these local PDFs.

Results overall dissipation-rate PDF

Results Reynolds number effect

Results Maximum dissipation-rate

Results Infinite Reynolds number limit

model In the limit of $Re_\lambda \to \infty$

additional layered substructure develops and the model ultimately **approaches Multifractal theory**:

$$
\varepsilon_{max}{\sim}Re_{\lambda}^2
$$

However,

 ε_{max} ~ $Re_\lambda^{1.95}$ is reached only when $Re_{\lambda} \approx 10^{40}$

Consequently, finite value *Re* remains important in any real application

Conclusions

Delft

Significant shear layers are intrinsic to explanation & quantification of extreme dissipation Model needs to incorporate relation between large and small scale AND smallest scale is not n

Our model accurately predicts the **magnitude** of *Re* scaling exponent AND its **development** with $Re_λ$ over the range where data is available

Predict the development of sublayers and sub-sublayers at (very) high Reynolds numbers

Funding and computational resources JSPS KAKENHI, MEXT and JHPCN Joint Research Projects email g.e.elsinga@tudelft.nl

[Elsinga, Ishihara & Hunt (2020) Proc. R. Soc. A]