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In memoriam : Charlie Doering (born 7th Jan 1956; died 15th May 2021)

‘
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The 3D incompressible Navier-Stokes equations
Consider the 3D Navier-Stokes equations in the domain [0, L]3,,

Ui+ u-vu=vAu—Vp+ f(x) divu=0 (divf=0)

Figure: Plots courtesy of J. R. Picardo and S. S. Ray. Left: energy dissipation field
e =2vS;;S;; of a forced 5123 NS flow at Re, = 196. Right: the field Q = | (Jw[2 — |S|?).

Question : Why does vorticity/strain accumulate on these ‘thin sets’?
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Some history of large-scale 3D NSE computations

Just for the record :
@ Orszag & Patterson 1972; Kerr 1985;

© Eswaran & Pope 1988 ; Jimenez et al 1993 ;
© Moin & Mahesh (Ann Rev FM 1998) ; Kurien & Taylor 2005 ;
© Ishihara, Gotoh, Kaneda (Ann Rev FM 2009)
© 4096° by Donzis, Yeung & Sreenivasan 2012: Re, ~ 1000.

Q@ PK's talk at 14:20 gave an up-date on the current state of affairs: e.g. up
to 18400° at ORNS. Also Dhawal Buaria’s talk 12,2883, Re, ~ 1300.

@ (i) 8000° computation — Ishihara, Elsinga & Hunt (PrRS 2020).
(ii) Elsinga, Ishihara, Goudar, da Silva & Hunt (2017).
(i) Hunt, Ishihara, Worth & Kaneda (2013, 2017).

J. D. Gibbon : Imperial College London [[GCTRENSUELLRGIHEECR KoM\ ETTES Delft-EuroMech 2021 4/12



Turbulent cascades & higher derivatives

N Ve — § Energy
( \) "\ \ (/ \] - Numerical simulations of the 3D
\/ \‘, ‘\7 / Navier-Stokes equations show that
‘\/ X,/ \‘ ( ¢ \‘(\ (’\f %‘/\ v finer and finer vortical structures ap-
\ ) pear as resolution increases involving

inverse scales much smaller than \.

Define a doubly-labeled set of volume integrals for 1 < n<oo;1 < m< 0in
d-dimensions

Hp.md = / IV ulPmdVy
Va
In dimensionless form:

—11/anmapq1/2m 2m

Fnma=v n,m,d Qn,m,d = m )

@ Derivatives are sensitive to ever finer length scales in the flow.

@ Higher values of m pick out the larger spikes, with the m = oo case
representing the maximum norm.
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Invariance and Leray’s weak solutions
The NSEs have the scale invariance :
u(x, t) = X u (x/X, t/X?) = Fomd — Fomd-

In the following (-) ; means time average up to time T :
Result

On periodic BCs withn > 1 & 1 < m < oo, d-dim NS-weak solutions obey
<F§?,;Z)a”*m'd>T <chmgRe®, ford=2,3

For d = 1 the same result holds for Burgers’ equation. JDG : EPL 2020.

@ Ford =3 when n=1, m= 1 gives the standard ¢ < L=*3Re® from
which the Kolmogorov length A\ is estimated

.| £ 1/4 1
A :(ﬁ> = L\ < Re¥*.

@ Is there a continuum of length scales corresponding to n, m > 1?
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Definition of a sequence of length scales )\, ,, 4(1)

Define a set of t-dependent length-scales {\, m 4(t)} s.t.

—d

L 2m(n+1)+d

- 2m

< Hnma = A, m,é *y
)\n,m.d ’

from which we discover

1 n+1 . 2m
(Dana) " =Foma Wit onmo = po=S—g

For NS weak solutions, whenn>1and1 < m< o

n,m,d

3
<L/\f1 >T S Cn7m7dRe(47d)(n+1)a”*m*d 4 O(Tf1) )

The upper bound has a finite limit : Richardson and Kolmogorov were correct!
. 3 3
[im —
nm-oo (4 —d)(n+1)anma 4-d
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More on scaling in d dimensions

Examine the exponent of F, , 4 : one finds that

2m(4 — d)

(4 - d)an,m,d = m

increases as d\,0.

@ Thus as the dimension decreases the dissipation increases which
implies more, not less, regularity.

@ Numerical simulations suggest that a flow may adjust itself to find the
smoothest, most dissipative set on which to operate.

@ This runs counter to a commonly held theory of viscous turbulence in
which singularities have been long-standing candidates as the
underlying cause of turbulent dynamics.

@ (i) JDG: J. Nonlin. Sci., 29(1), 215228, 2019
(il) JDG : Turbulent cascades & thin sets in 3D NS-turbulence EPL 2020
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The Multifractal Model (MFM) of Parisi and Frisch : |

The p-th order velocity structure function S, should scale as

— P h
Sp(r) = (Ju(x + r) — u(x)| >st.av. ~ P
@ K41 theory says that h = ] to ensure that the energy dissipation rate ¢ is homogeneous in
space and time. Thus Sp ~ rP/3. When p = 3 the right hand side is equal to —£er which
is Kolmogorov’s four-fifths law.

@ Parisi and Frisch (1985) then relaxed the enforcement of h = 1 to allow a continuous
spectrum of exponents h, provided the dissipation rate ¢ is constant “on the average”.

@ In the MFM’s original formulation Py (h), the probability of observing a given scaling
exponent h at the scale r was computed by assuming that each value of h belongs to a
given fractal set of dimension D(h). A more precise mathematical definition can be
established by using Large Deviation Theory where Pr(h) is chosen as (see Eyink 2008)

Pr(h) ~ rcth

@ C(h) is the multi-fractal spectrum. It has encoded within it all the properties of flow
intermittency. One can write d = D(h) + C(h).
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The Multifractal Model (MFM) of Parisi and Frisch : Il
The structure functions Sp(r), instead of taking their K41-form with h = 1, are now expressed as
Sp(r) ~ 1, Go = inf [hp + C(h)] .

A classic sign of intermittency is that ¢p is a concave curve below linear. In the 3d computations
below, note that (3 = 1:
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Figure: Taken from http://www.scholarpedia.org/article/Turbulence curated by Uriel Frisch. The
value of the exponents obtained by two independent direct numerical simulations of
homogeneous isotropic turbulence at very high resolution.
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How to blend the MFM and the NSEs : Dubrulle & JDG (2021)

1

Paladin and Vulpiani (1987) suggested an h-dependent dissipation scale Ln; ~ ReT+h. We use
1
the scaling n, ~ v T+h to obtain the correspondence

L3 /
\Z

Apply this to our estimate for < nm.d Den,m, ">T, for all derivatives :

VU aVy /h nem="p, (h)dh,
[

@ h>(1-d)/3;ford =3wehave h > —2/3.
@ C(h) > 1 — 3h: consistent with the four-fifths law. Also C(h,) > d.

~
Normalization ~

-1 -2/3 -1/3 0 1/3  2/3 1
h

Figure: The admissibility range of C(h) when d = 3 including C(h) > 1 — 3h. The blue dotted line : log-normal model with
b = 0.045; red dashed line : log-Poisson model with 3 = 2/3.
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Avoidance of the 3d NS singular set?

In d = 3 dimensions, the range of his now
—-2/3<h<1/3
thus implying a wide range of fractal dimensions.
o Caffarelli, Kohn and Nirenberg (1982) developed the idea of suitable weak solutions of the
3d NSEs. The singular set in space-time has zero one-dimensional Hausdorff measure.
e Their result shows that in the limit r — 0, as solutions approach the CKN singular set, the

velocity field u must obey

const
lul > > as r—0.

The r—" lower bound suggests a minimal rate of approach to the the CKN singular set.
The corresponding value of his h = —1.

e Thus, our lower bound h > —2/3 keeps solutions away from the singular set.

Dubrulle and Gibbon : arXiv:2102.00189v3 [physics.flu-dyn]
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