Intermittency and thin sets in 3*d* Navier-Stokes Turbulence : A link with the Multifractal Model

J. D. Gibbon : Imperial College London

Delft-EuroMech 2021

In memoriam : Charlie Doering (born 7th Jan 1956; died 15th May 2021)

J. D. Gibbon : Imperial College London Intermittency and thin sets in 3d Navier-Sta

The 3D incompressible Navier-Stokes equations

Consider the 3D Navier-Stokes equations in the domain $[0, L]_{per}^3$

 $\boldsymbol{u}_t + \boldsymbol{u} \cdot \nabla \boldsymbol{u} = \nu \Delta \boldsymbol{u} - \nabla \boldsymbol{p} + \boldsymbol{f}(\boldsymbol{x}) \quad \text{div } \boldsymbol{u} = 0 \quad (\text{div } \boldsymbol{f} = 0)$

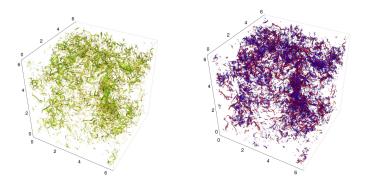


Figure: Plots courtesy of J. R. Picardo and S. S. Ray. Left : energy dissipation field $\varepsilon = 2\nu S_{i,j}S_{j,i}$ of a forced 512³ NS flow at $Re_{\lambda} = 196$. Right : the field $Q = \frac{1}{2} (|\omega|^2 - |S|^2)$.

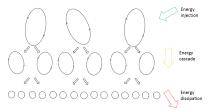
Question : Why does vorticity/strain accumulate on these 'thin sets'?

J. D. Gibbon : Imperial College London Intermittency and thin sets in 3d Navier-Sto

Just for the record :

- Orszag & Patterson 1972; Kerr 1985;
- Eswaran & Pope 1988 ; Jimenez et al 1993 ;
- Moin & Mahesh (Ann Rev FM 1998); Kurien & Taylor 2005;
- Ishihara, Gotoh, Kaneda (Ann Rev FM 2009)
- **5** 4096³ by Donzis, Yeung & Sreenivasan 2012 : $Re_{\lambda} \sim 1000$.
- Solution PK's talk at 14:20 gave an up-date on the current state of affairs : e.g. up to 18400^3 at ORNS. Also Dhawal Buaria's talk 12, 288^3 , $Re_{\lambda} \sim 1300$.
- (i) 8000³ computation Ishihara, Elsinga & Hunt (PrRS 2020).
 (ii) Elsinga, Ishihara, Goudar, da Silva & Hunt (2017).
 (iii) Hunt, Ishihara, Worth & Kaneda (2013, 2017).

Turbulent cascades & higher derivatives



Numerical simulations of the 3D Navier-Stokes equations show that finer and finer vortical structures appear as resolution increases involving inverse scales much smaller than λ_k .

Define a doubly-labeled set of volume integrals for $1 \le n < \infty$; $1 \le m \le \infty$ in *d*-dimensions

$$H_{n,m,d} = \int_{V_d} |\nabla^n \boldsymbol{u}|^{2m} dV_d$$

In dimensionless form :

$$F_{n,m,d} = \nu^{-1} L^{1/\alpha_{n,m,d}} H_{n,m,d}^{1/2m}, \qquad \alpha_{n,m,d} = \frac{2m}{2m(n+1)-d},$$

Derivatives are sensitive to ever finer length scales in the flow.

2 Higher values of *m* pick out the larger spikes, with the $m = \infty$ case representing the maximum norm.

Invariance and Leray's weak solutions

The NSEs have the scale invariance :

$$\boldsymbol{u}(\boldsymbol{x}, t) \rightarrow \lambda^{-1} \boldsymbol{u}\left(\boldsymbol{x}/\lambda, t/\lambda^2\right) \qquad \Rightarrow \qquad \boldsymbol{F}_{n,m,d} \rightarrow \boldsymbol{F}_{n,m,d}$$

In the following $\langle \cdot \rangle_T$ means time average up to time T :

Result

On periodic BCs with $n \ge 1$ & $1 \le m \le \infty$, d-dim NS-weak solutions obey

$$\left\langle \mathcal{F}_{n,m,d}^{(4-d)lpha_{n,m,d}} \right\rangle_{\mathcal{T}} \leq c_{n,m,d} \, \textit{Re}^3 \,, \qquad \textit{for } d=2, \, 3$$

For d = 1 the same result holds for Burgers' equation. JDG : EPL 2020.

For d = 3 when n = 1, m = 1 gives the standard ε ≤ L⁻⁴ν³Re³ from which the Kolmogorov length λ_k is estimated

$$\lambda_k^{-1} = \left(\frac{\varepsilon}{\nu^3}\right)^{1/4} \qquad \Rightarrow \qquad L\lambda_k^{-1} \le Re^{3/4}$$

Is there a continuum of length scales corresponding to n, m > 1?

Definition of a sequence of length scales $\lambda_{n,m,d}(t)$

Define a set of *t*-dependent length-scales $\{\lambda_{n,m,d}(t)\}$ s.t.

$$\left(\frac{L}{\lambda_{n,m,d}}\right)^{-d}H_{n,m,d} = \lambda_{n,m,d}^{-2m(n+1)+d}\nu^{2m}$$

from which we discover

$$\left(L\lambda_{n,m,d}^{-1}\right)^{n+1} = F_{n,m,d}$$
 with $\alpha_{n,m,d} = \frac{2m}{2m(n+1)-d}$

For NS weak solutions, when $n \ge 1$ and $1 \le m \le \infty$

$$\left\langle L\lambda_{n,m,d}^{-1}\right\rangle_{T}\leq c_{n,m,d}Re^{rac{3}{(4-d)(n+1)\alpha_{n,m,d}}}+O\left(T^{-1}
ight)$$

The upper bound has a finite limit : Richardson and Kolmogorov were correct!

$$\lim_{n,m\to\infty}\frac{3}{(4-d)(n+1)\alpha_{n,m,d}}=\frac{3}{4-d}$$

J. D. Gibbon : Imperial College London Intermittency and thin sets in 3d Navier-St. Delft-EuroMech 2021 7 / 12

More on scaling in *d* dimensions

Examine the exponent of $F_{n,m,d}$: one finds that

$$(4-d)\alpha_{n,m,d} = \frac{2m(4-d)}{2m(n+1)-d}$$
 increases as $d \searrow 0$.

- Thus as the dimension decreases the dissipation increases which implies more, not less, regularity.
- Numerical simulations suggest that a flow may adjust itself to find the smoothest, most dissipative set on which to operate.
- This runs counter to a commonly held theory of viscous turbulence in which singularities have been long-standing candidates as the underlying cause of turbulent dynamics.
- (i) JDG : J. Nonlin. Sci., 29(1), 215228, 2019
 (ii) JDG : Turbulent cascades & thin sets in 3D NS-turbulence EPL 2020

The *p*-th order velocity structure function S_p should scale as

$$\mathcal{S}_{p}(r) = \left\langle \left| oldsymbol{u}(oldsymbol{x}+oldsymbol{r}) - oldsymbol{u}(oldsymbol{x})
ight|^{p}
ight
angle_{st.av.} \sim r^{hp}$$
 .

- K41 theory says that $h = \frac{1}{3}$ to ensure that the energy dissipation rate ε is homogeneous in space and time. Thus $S_p \sim r^{p/3}$. When p = 3 the right hand side is equal to $-\frac{4}{5}\varepsilon r$ which is Kolmogorov's four-fifths law.
- Parisi and Frisch (1985) then relaxed the enforcement of h = ¹/₃ to allow a continuous spectrum of exponents h, provided the dissipation rate ε is constant "on the average".
- In the MFM's original formulation P_r(h), the probability of observing a given scaling exponent h at the scale r was computed by assuming that each value of h belongs to a given fractal set of dimension D(h). A more precise mathematical definition can be established by using Large Deviation Theory where P_r(h) is chosen as (see Eyink 2008)

$$P_r(h) \sim r^{C(h)}$$
.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

• C(h) is the multi-fractal spectrum. It has encoded within it all the properties of flow intermittency. One can write d = D(h) + C(h).

The Multifractal Model (MFM) of Parisi and Frisch : II

The structure functions $S_p(r)$, instead of taking their K41-form with $h = \frac{1}{3}$, are now expressed as

$$S_p(r) \sim r^{\zeta_p}$$
, $\zeta_p = \inf_h [hp + C(h)]$.

A classic sign of intermittency is that ζ_p is a *concave curve below linear*. In the 3*d* computations below, note that $\zeta_3 = 1$:

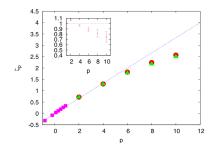


Figure: Taken from http://www.scholarpedia.org/article/Turbulence curated by Uriel Frisch. The value of the exponents obtained by two independent direct numerical simulations of homogeneous isotropic turbulence at very high resolution.

A (1) > A (2) > A (2)

How to blend the MFM and the NSEs : Dubrulle & JDG (2021)

Paladin and Vulpiani (1987) suggested an *h*-dependent dissipation scale $L\eta_h^{-1} \sim Re^{\frac{1}{1+h}}$. We use the scaling $\eta_h \sim \nu^{\frac{1}{1+h}}$ to obtain the correspondence

$$L^{-3}\int_{\mathcal{V}_{\Gamma}} |\nabla^{n}\boldsymbol{u}|^{2m} dV_{d} \quad \longleftrightarrow \quad \int_{h} \eta_{h}^{2m(h-n)} P_{\eta_{h}}(h) dh,$$

Apply this to our estimate for $\left\langle F_{n,m,d}^{(4-d)\alpha_{n,m,d}} \right\rangle_T$, for all derivatives :

- $h \ge (1 d)/3$; for d = 3 we have $h \ge -2/3$.
- $C(h) \ge 1 3h$: consistent with the four-fifths law. Also $C(h_{min}) \ge d$.

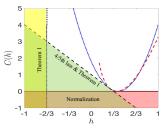


Figure: The admissibility range of C(h) when d = 3 including $C(h) \ge 1 - 3h$. The blue dotted line : log-normal model with b = 0.045; red dashed line : log-Poisson model with $\beta = 2/3$.

< ロ > < 同 > < 回 > < 回 >

In d = 3 dimensions, the range of h is now

 $-2/3 \le h \le 1/3$

thus implying a wide range of fractal dimensions.

- Caffarelli, Kohn and Nirenberg (1982) developed the idea of suitable weak solutions of the 3d NSEs. The singular set in space-time has zero one-dimensional Hausdorff measure.
- 2 Their result shows that in the limit $r \rightarrow 0$, as solutions approach the CKN singular set, the velocity field **u** must obey

$$|\boldsymbol{u}| > \frac{const}{r}, \text{ as } r \to 0.$$

The r^{-1} lower bound suggests a minimal rate of approach to the the CKN singular set. The corresponding value of *h* is h = -1.

3 Thus, our lower bound $h \ge -2/3$ keeps solutions away from the singular set.

Dubrulle and Gibbon : arXiv:2102.00189v3 [physics.flu-dyn]